Электронный научно-производственный журнал «АгроЭкоИнфо»

УДК 633.34:631.559:631.8

Эффективность применения агрохимикатов при выращивании сои по нулевой технологии в условиях Центрально-Черноземного региона РФ

Низкодубова А.А., Каменев Р.А., Ратников Р.Н., Гужвин С.А.

Донской государственный аграрный университет

Аннотация

Полевые опыты по изучению эффективности применения минеральных удобрений, фунгицидного протравителя семян и инокулянта на сое проведены в 2018-2020 гг. на типичном тяжелосуглинистом чернозёме производственного хозяйства «Левобережное» ООО «ЭкоНиваАгро», которое расположено в центральной части Воронежской области. Объектами исследований были: copm cou OAK Пруденс (оригинатор University of Guelph, Канада), инокулянт Нитрагин Ж ("Фрагария", Аргентина), фунгицидный протравитель Дэлит Про, КС, пираклостробин 200 г/л (БАС Φ , Германия). Минеральные удобрения были представлены аммиачной селитрой (34,4%), аммофосом (12:52) и диаммофоской (10:26:26). Сою возделывали по технологии прямого посева No-Till. Сев сои был выполнен сеялкой марки Амити Сингл Диск Дрилл, оборудованной однодисковыми сошниками с междурядьем 38 см. Предшественник сои - кукуруза на зерно. Внесение минеральных удобрений осуществлялось одновременно с посевом в междурядье. Урожайность зерна сои на контрольном варианте (без применения агрохимикатов) наибольшей была в благоприятном по увлажнению 2018 г. 1,50 т/га и практически одинаковой в 2019 и 2020 гг. – 1,24 и 1,23 т/га соответственно. В среднем за 2018-2020 гг. урожайность зерна сои на контрольном варианте составила 1,32 т/га. Максимальная урожайность зерна получена на варианте с совместным применением инокулянта Нитрагин Ж и аммиачной селитры в дозе $200~\kappa$ г/га — 2,08~m/га. Прибавка по сравнению с контрольным вариантом составила 0,76 т/га или 57,0%. Наибольшее влияние на технологические показатели семян сои оказала допосевная инокуляция семян и припосевное внесение азотных удобрений в дозе N_{70} . Инокуляция обеспечивала повышение содержания протеина в семенах сои на 4,1%, а внесение N_{70} на 4,3% в абсолютном выражении по сравнению с контролем.

Электронный научно-производственный журнал «АгроЭкоИнфо»

Ключевые слова: СОЯ, МИНЕРАЛЬНЫЕ УДОБРЕНИЯ, ФУНГИЦИД, ИНОКУЛЯНТ, УРОЖАЙНОСТЬ, НУЛЕВАЯ ТЕХНОЛОГИЯ

Введение

В настоящее время всё большее внимание уделяется здоровому и сбалансированному питанию. По данным Института питания РАМН в России дефицит белка давно превышает цифру в 1 млн т. в год и устойчиво продолжает расти [1, 2]. Это объясняется недостатком белковой пищи и резким сокращением мяса в рационе человека. Восполнить необходимый объем дефицита протеина можно за счёт развития животноводства, где соя и продукты её переработки имеют ключевое значение, а также расширение использования соевых продуктов в питании человека. Соя, как источник протеина является уникальным растением для животноводства, она стала существенным фактором повышения молочной и мясной продуктивности за счёт высокого содержания белка в семенах до 49%, высоких показателей его качества и переваримости [2,3,4,5,6]. На данный момент около 12% производимой сои используется в пищевой промышленности [1].

Одним из факторов повышения содержание протеина в продукции растениеводства, в том числе сои, является оптимизация азотного питания растений за счет минеральных и биологических источников азота. Благодаря азотфиксации при симбиозе клубеньковых бактерий и бобовых растений удается снизить расход энергоресурсов и загрязнение окружающей среды [6]. В Центрально-Черноземном экономическом районе Российской Федерации за последние годы динамично расширяется площадь выращивания сои. Большое внимание уделяется исследованиям по повышению эффективности выращивания этой перспективной культуры, и особый интерес представляет влияние инокуляции и минерального питания на урожайность и качество зерна сои [7,8].

Целью исследований было изучение влияния минеральных удобрений, инокулянта и фунгицидного протравителя семян, на урожайность и технологические качества сои сорта ОАК Пруденс на черноземе типичном в условиях Воронежской области при выращивании по технологии прямого посева.

Полевые опыты проводились в 2018-2020 гг. на полях ООО «ЭкоНиваАгро» производственное хозяйство «Левобережное» на типичных чернозёмных тяжелосуглинистых

Электронный научно-производственный журнал «АгроЭкоИнфо»

почвах. <u>Объектами исследований</u> были: сорт сои ОАК Пруденс (оригинатор University of Guelph, Канада), инокулянт Нитрагин Ж ("Фрагария", Аргентина), фунгицидный протравитель Дэлит Про, КС, пираклостробин 200 г/л (БАСФ, Германия). Минеральные удобрения были представлены аммиачной селитрой (34,4%), аммофосом (12:52) и диаммофоской (10:26:26). Схема опыта представлена в таблице 2. Предшественник – кукуруза на зерно. Посев проводили сеялкой AmitySingleDiscDrill, оборудованной однодисковыми сошниками, с междурядьем 38 см по стерне кукурузы на зерно. Внесение минеральных удобрений осуществлялось одновременно с высевом семян в междурядье туковыми сошниками. Повторность опыта четырехкратная. Размещение делянок систематическое. Площадь делянки 2400 м² (24 м*100 м). Уборку проводили комбайном John Deere T 670 i.

Результаты и обсуждение

Погодные условия в годы проведения полевых опытов существенно отличались по годам. Среднемноголетняя сумма осадков составляет 495 мм, за вегетационный период сои 240 мм (табл. 1).

Таблица 1 Погодные условия 2018 – 2020 гг.

Показатель	2018 г	2019 г	2020 г	Среднемноголет-		
				ние значения		
Сумма осадков за вегетацию, мм	152	118	84	240		
Сумма осадков за сельскохозяйственный год, мм	564	451	366	495		
Сумма активных температур, °С	2524	2276	2439	2323		
Гидротермический коэффициент Селянинова	0,60	0,52	0,35	1,0		

Наиболее благоприятные погодные условия для выращивания сои сложились в 2018 году. Сумма осадков за сельскохозяйственный год превысила среднемноголетнюю норму на 69 мм, но за вегетационный период выпадение осадков было меньше нормы на 88 мм. В 2019 г. за сельскохозяйственный год выпало 451 мм осадков, что практически соответствует среднемноголетним нормам, но за период вегетации дефицит достиг 122 мм. В 2020 г. сложились наиболее неблагоприятные погодные условия. Недобор осадков составил 129 и 156 за с.-х. год и за период вегетации сои. Гидротермический коэффициент Селянинова (ГТК) 2020 года составил 0,35 единиц. В 2018 и 2019 годы зафиксированы более благоприятные погодные условия и ГТК составил 0,6 и 0,52.

Электронный научно-производственный журнал «АгроЭкоИнфо»

Урожайность зерна сои на контрольном варианте (без применения агрохимикатов) наибольшей была в благоприятном по увлажнению 2018 г. 1,50 т/га и практически одинаковой в 2019 и 2020 гг. – 1,24 и 1,23 т/га соответственно (табл. 2).

Таблица 2 Урожайность семян сои за 2018–2020 гг., т/га

Варианты	Годы			Среднее	Прибавка к контролю	
	2018	2019	2020	за три года	т/га	%
	Γ.	Γ.	Γ.	Тода	1/1 a	/0
контроль (без применения агрохимикатов)	1,50	1,24	1,23	1,32	-	-
N ₃₅ (AC 100кг/га)	1,77	1,79	1,34	1,63	0,31	23,3
N ₇₀ (AC 200кг/га)	1,88	2,17	1,46	1,84	0,51	38,6
$N_{35}P_{52}$ (АФ 100кг/га + АС 60кг/га)	1,85	1,84	1,42	1,71	0,38	28,8
$N_{35}P_{52}K_{52}$ (ДАФК 200 кг/га + AC 40 кг/га)	1,76	1,82	1,50	1,69	0,37	27,9
$N_{70}P_{52}K_{52}$ (ДАФК 200кг/га + AC 150 кг/га)	1,74	2,19	1,49	1,80	0,48	36,2
Дэлит Про, КС (0,5 л/т)	1,55	1,39	1,24	1,39	0,07	5,2
Дэлит Про, КС + N ₃₅	1,85	2,00	1,43	1,76	0,43	32,8
Дэлит Про, КС + N ₇₀	1,90	2,27	1,52	1,90	0,57	43,2
Дэлит Про, КС + N ₃₅ P ₅₂	1,85	1,93	1,39	1,72	0,40	30,1
Дэлит Про, КС + $N_{35}P_{52}K_{52}$	1,76	1,79	1,39	1,65	0,32	24,3
Дэлит Про, КС + $N_{70}P_{52}K_{52}$	2,05	2,13	1,48	1,89	0,56	42,3
Нитрагин, Ж (2 л/т)	2,23	2,05	1,28	1,85	0,53	39,9
Нитрагин, Ж $+$ N_{35}	2,32	2,15	1,41	1,96	0,63	47,9
Нитрагин, Ж $+$ N_{70}	2,31	2,45	1,48	2,08	0,76	57,0
Нитрагин, Ж + $N_{35}P_{52}$	2,26	2,20	1,34	1,94	0,61	46,1
Нитрагин, Ж + $N_{35}P_{52}K_{52}$	2,28	2,28	1,34	1,97	0,64	48,5
Нитрагин, Ж + $N_{70}P_{52}K_{52}$	2,26	2,41	1,42	2,03	0,71	53,3
Дэлит Про, КС (0.5 л/т) + Нитрагин Ж (2 л/т)	2,26	2,20	1,29	1,92	0,59	44,9
Дэлит Про, КС + Нитрагин Ж $+ N_{35}$	2,41	2,23	1,36	2,00	0,67	50,9
Дэлит Про, КС + Нитрагин Ж + N ₇₀	2,29	2,40	1,42	2,04	0,71	53,7
Дэлит Про, КС + Нитрагин Ж $+ N_{35}P_{52}$	2,31	2,35	1,32	1,99	0,67	50,3
Дэлит Про, КС + Нитрагин Ж + $N_{35}P_{52}K_{52}$	2,32	2,28	1,33	1,98	0,65	49,3
Дэлит Про, КС + Нитрагин Ж + $N_{70}P_{52}K_{52}$	2,30	2,41	1,47	2,06	0,73	55,5
HCP 0,5	0,14	0,14	0,05	-	-	-

В 2018 году на всех вариантах с минеральными удобрениями получено существенное увеличение урожайности зерна сои по сравнению с контрольным вариантом. Максимальная прибавка получена при внесении при посеве аммиачной селитры в дозе N₇₀, которая составила к контролю 0,38 т/га или 25,3%. Применение фунгицидного протравителя

Электронный научно-производственный журнал «АгроЭкоИнфо»

семян сои на фоне внесения минеральных удобрений было эффективно лишь от полного минерального удобрения в дозе $N_{70}P_{52}K_{52}$. Увеличение урожайности по сравнению с контрольным вариантом составило 0,55 т/га или 36,7%, а по сравнению с вариантом, на котором применялись только минеральные удобрения в этой дозе без обработки семян фунгицидом - на 0,31 или на 17,8%.

Высокоэффективным в этот год полевых опытов было применение для инокуляции семян препарата Нитрагин Ж. Урожайность на этом варианте достигала 2,23 т/га, что больше, чем на контроле на 48,7%. Посев семян сои, обработанных инокулянтом, на фоне применения минеральных удобрений обусловил лишь тенденцию увеличения урожайности зерна на 0,03-0,09 т/га, так как данные прибавки меньше НСР опыта.

В 2018 году максимальная урожайность зерна сои получена на варианте с применением инокулянта и фунгицидного протравителя семян перед посевом в сочетании с припосевным применением аммиачной селитры в дозе N_{70} , которая составила 2,41 т/га, и превысили показатели контрольного варианта на 60,7%.

В 2019 году, как и в предыдущем году, на вариантах с применением минеральных удобрений получено существенное и математически достоверное увеличение урожайности зерна сои. Максимальные прибавки получены на вариантах с наибольшими дозами азота в виде аммиачной селитры N_{70} и полного минерального удобрения $N_{70}P_{52}K_{52}$, которые по сравнению с контрольным вариантом составили 0.93-0.95 т/га или 75.0-76.6%.

Применение фунгицидного протравителя Дэлит Про, КС (0,5 л/т) для обработки семян сои перед посевом в 2019 году обеспечило существенное увеличение урожайности зерна, которое по сравнению с контрольным вариантом составило 0,15 т/га или 12,1%. Но максимальная урожайность культуры в этот год полевых опытов получена на варианте с применением азотных удобрений в дозе N_{70} и инокулянта Нитрагин, Ж (2 л/т). Прибавка по сравнению с контрольным вариантом составила 1,21 т/га или 97,6%.

Острозасушливом 2020 году наибольшая урожайность зерна сои получена на варианте с применением фунгицидного протравителя Дэлит Про, КС (0,5 л/т) и азотных удобрений в дозе N_{70} . Увеличение урожайности по сравнению с контрольным вариантом составило 0,29 т/га или 23,6%. При замене протравителя на инокулянт на этом же фоне азотных удобрений урожайность зерна сои снижалась, но лишь на 0,04 т/га.

Электронный научно-производственный журнал «АгроЭкоИнфо»

В среднем за 2018-2020 гг. урожайность зерна сои на контрольном варианте составила 1,32 т/га. Максимальная урожайность зерна была получена на варианте с совместным применением инокулянта Нитрагин Ж и аммиачной селитры в дозе 200 кг/га — 2,08 т/га. Прибавка по сравнению с контрольным вариантом составила 0,76 т/га или 57,0%.

Содержание протеина в семенах сои варьировало по вариантам в годы исследований от 28,9 до 40,1%. Самый низкий показатель содержания протеина в семенах был на контроле — в среднем 31,5%. Наибольшее влияние на содержание белка оказала допосевная инокуляция семян и припосевное внесение азотных удобрений в дозе N₇₀. Инокуляция обеспечивала повышение содержания протеина в семенах сои на 4,1%, а внесение N₇₀ на 4,3% в абсолютном выражении по сравнению с контролем.

Фунгицидная обработка семян не оказывала существенного влияния на содержание белка в зерне. В тоже время при совместном применении инокуляции, фунгицидной протравки семян и припосевного внесения минеральных удобрений NPK наблюдалась тенденция повышения содержания протеина в зерне в среднем на 0,77% в абсолютном выражении по сравнению с вариантами индивидуального применения инокуляции и азотных удобрений.

Заключение

При выращивании сои на черноземе типичном Воронежской области по технологии No-Till целесообразно проводить предпосевную инокуляцию семян препаратом Нитрагин, Ж (2 π/τ). При посеве сои необходимо применять припосевное удобрение в виде аммиачной селитры в дозе N_{70} .

Список использованных источников

- 1. Устюжанин А.П. Стратегия развития соевого комплекса России / А.П. Устюжанин // Земледелие. 2010. №3. С. 3 6.
- 2. Белышкина, М.Е. Современное состояние и перспективы мирового и российского рынков сои / М.Е. Белышкина // Аграрная Россия. 2013. №6. С. 7 11.
- 3. Дробин, Г.В. Соя: значение и место в АПК России / Г.В. Дробин // Техника и оборудование для села. -2012. -№5. С. 24 26
- 4. Инновационные технологии возделывания масличных культур. Краснодар: Просвещение-Юг, 2017. 256с.

Электронный научно-производственный журнал «АгроЭкоИнфо»

- 5. Гуреева, Е.В., Фомина, Т.А. Соя источник растительного белка / Е.В. Гуреева, Т.А. Фомина // Аграрная наука. 2017. № 11-12. С. 20-21.
- 6. Гатаулина, Г.Г. Системный подход к анализу характеристик продукционного процесса у зерновых бобовых культур / Г.Г. Гатаулина, С.С. Соколова, М.Е. Белышкина // Известия ТСХА. 2014. №2. С. 69 95.
- 7. Оразаева И.В., Муравьев А.А. Показатели продуктивности сортов сои в зависимости от инокуляции семян и азотного удобрения // Достижения науки и техники АПК. 2018. Т. 32. № 4. С. 34-37
- 8. Федотов В.А., Макарова Н.А., Некрасова Т.П., Подлесных Н.В. Урожай и качество зернопродукции сои в зависимости от удобрений и норм высева семян // Аграрная наука. 2017 №10. С. 20-23

Цитирование:

Низкодубова А.А., Каменев Р.А., Ратников Р.Н., Гужвин С.А. Эффективность применения агрохимикатов при выращивании сои по нулевой технологии в условиях Центрально-Черноземного региона РФ [Электрон. ресурс] // АгроЭкоИнфо: Электронный научно-производственный журнал. — 2021. — №1. — Режим доступа: http://agroecoinfo.narod.ru/journal/STATYI/2021/1/st_109.pdf. Индекс DOI: https://doi.org/10.51419/20211109.