Электронный научно-производственный журнал «АгроЭкоИнфо»

УДК:631.512.2.582

Структура сорного компонента и его пространственное распределение в полях зернопропашного севооборота

Гогмачадзе Г.Д.¹, Матюк Н.С.², Полин В.Д.², Биналиев И.Ф.²

¹ВНИИ Агроэкоинформ

²РГАУ-МСХА им. К.А. Тимирязева

Аннотация

В работе рассматривается видовой состав и пространственное распределение сорной растительности в зависимости от приемов обработки почвы под культуры зернопропашного севооборота. Неравномерное распределение сорной растительности по площади поля требует разработки новых методик позволяющих идентифицировать сорные растения и их пространственное местонахождение, что обеспечит в системах точного земледелия использование дифференцированного применения гербицидов.

Ключевые слова: СОРНЫЕ РАСТЕНИЕ, МИНИМАЛЬНАЯ ОБРАБОТКА, СЕВООБОРОТ, ГЕРБИЦИДЫ, ТОЧНОЕ ЗЕМЛЕДЕЛИЕ, КАРТА ЗАСОРЕННОСТИ

С освоением новых минимальных систем обработки почвы проблема борьбы с сорняками становится особенно острой, что вызывает необходимость расширения списка используемых гербицидов, увеличения кратности их применения на полях севооборота, и рост пестицидной нагрузки на агроландшафт. Требования экологически и экономически обоснованного использования пестицидов обусловливают поиск новых подходов сокращения их применения. [1]

Важным элементом интегрированной защиты растений является фитосанитарный мониторинг, на основе которого осуществляется принятие решений о проведении защитных мероприятий. Современные тенденции в этом направлении таковы, что все большее внимание уделяется дистанционному методу сбора фитосанитарных данных. Это

Электронный научно-производственный журнал «АгроЭкоИнфо»

связано с общей тенденцией широкого применения высоких технологий в сельском хозяйстве. В фитосанитарном мониторинге основные перспективы связаны с дистанционным определением засоренности посевов и посадок с.-х. культур. Предлагаемые на современном этапе методы идентификации сорных растений имеют не высокую точность, или большую трудоемкость, что не позволяет их широко использовать в производственных условиях.[2]

Комплексные исследования по оценке видового состава и обилия сорняков в посевах различных полевых культур выполнены в однофакторном полевом опыте в 2018-2020 гг.,, заложенном кафедрой земледелия и методики опытного дела ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева в 2008 году на дерново-подзолистой среднесуглинистой почве по следующей схеме (табл. 1).

Таблица 1 – Схема полевого опыта каф. земледелия РГАУ-МСХА

Приемы обработки	Культуры севооборота									
почвы	Вика-овес	Озимая пшеница	Картофель	Ячмень						
Отвальная (О)	вспашка +	вспашка +	вспашка +	вспашка +						
	культивация	культивация	фрезерование	культивация						
Минимальная (М.О)	прямой посев	прямой посев	фрезерование	Дискование						

Учет сорного компонента проводился количественно-весовым методом с помощью рамки 0,25 м² (50см*50см) - на озимой пшенице, вика-овсе и ячмене; 0,5 м² (0,71см*0,70см) - на картофеле. Рамки накладывались в зависимости от размера поля по квадратам 5х8м и 10х8 м. Общее количество учетных площадок на опыте составило 128 шт., на каждой культуре по 32 рамки. Показатель встречаемости сорных растений по полю определяющий их вредоносность и агрессивность в процессе конкуренции с культурами севооборота определяли в процентах от общего количества сорных растений попадающих во все рамки учета.

Изменение видового состава сорного компонента в опыте изучается с момента его закладки в 2008 году. К моменту наших исследований на опытном поле площадью 6 гектаров насчитывается 28 малолетних видов сорных растений и 10 многолетних. Сорные растения за долгий период своего развития в агрофитоценозе развили различные

морфологические и биологические особенности, сходные с сельскохозяйственными культурами, где они чаще всего встречаются, не одинаковые требования к условиям развития обусловливает специализацию различных биогрупп сорных растений, засоряющих соответствующую агробиологическую группу сельскохозяйственных культур. Это подтверждают и наши исследования по видовому и количественному составу сорного компонента в посевах зерновых, кормовых и пропашных культур зернопропашного севооборота.

В ходе проведенных исследований установлено, что в посевах озимой пшеницы преобладают зимующие сорные растения, которые по своим требованиям к условиям прорастания и биологии развития в осенний и весенний периоды сходны с культурой, и способны конкурировать с ней за факторы роста и развития (рис. 1,2).

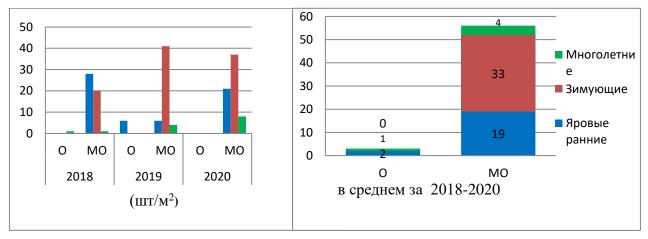


Рис. 1, 2 - Биогруппы сорных растений в посевах озимой пшеницы (шт/м²) в среднем за 2018-2020 год

Оценка роли системы обработки почвы в изменении засоренности показывает, что в посевах озимой пшеницы на отвальной обработке осеннее применение гербицида Алистер Гранд (0,8 л/га) в фазу 3 листа культуры позволяет полностью уничтожать сорные растения. На прямом посеве из-за отсутствия механического воздействия на сорный компонент активно развиваются зимующие и многолетние виды сорных растений. В среднем за три года исследований на отвальной обработке сорняки практически отсутствовали, в то время как на прямом посеве культуры их количество достигало 56 шт/м² из них 33 штуки приходилось на зимующую биогруппу сорных растений.

В отличии от структуры агрофитоценоза озимых зерновых в посадках картофеля чаще всего встречаются яровые ранние сорняки, а также яровой поздний сорняк просо куриное (Echinochloa crusgalli) (рис. 3,4).

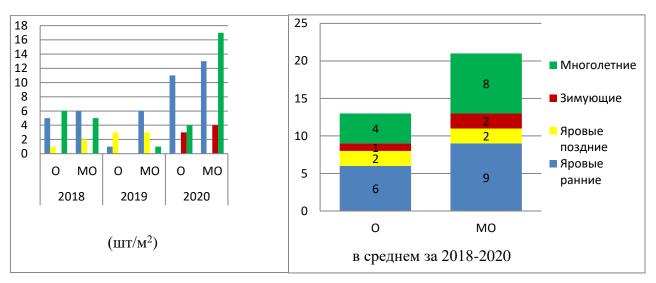


Рис. 3, 4 - Биогруппы сорных растений в посадках картофеля (шт/м 2) в среднем за 2018-2020 год

В целом по годам исследований сочетание фрезерной обработки почвы на глубину 16-18 см с применением почвенного гербицида по обоим вариантам на картофеле количество сорняков значительно меньше, чем на других культурах севооборота. В тоже время необходимо отметить увеличение количества многолетних сорняков, что объясняется интенсивной обработкой фрезами, сопровождающиеся измельчением вегетативных органов размножения этой группы сорняков, которые впоследствии прорастают и увеличивают засоренность культуры. Обращает на себя внимание практически двух кратное увеличение количества сорных растений на картофеле в 2020 году. Такой всплеск засоренности вызван неблагоприятными погодными условиями этого года. Из-за обильных осадков посадка картофеля стала возможной только в конце мая. После посадки и применения гербицида низкие температуры и большое количество осадков не позволили гербициду сработать эффективно, чем воспользовались сорные растения. Основными представителями многолетних сорных растений были хвощ полевой (Equisetum arvense L.) и пырей ползучий (Agropyrum repens L.).

Оценка засоренности в посевах ячменя показала, что в структуре сорного компонента преобладают яровые ранние сорняки, имеющие сходную биологию с

Электронный научно-производственный журнал «АгроЭкоИнфо»

культурой (рис.5,6).

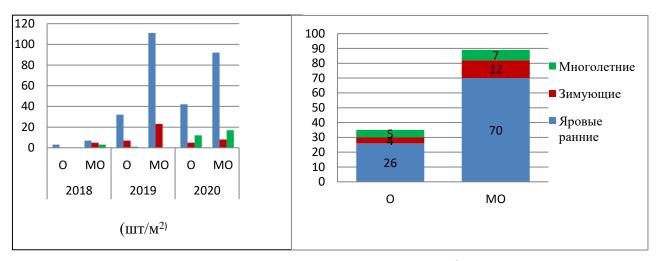


Рис. 5, 6 - Биогруппы сорных растений в посевах ячменя (шт/м^2) в среднем за 2018-2020 год

По годам количество сорняков значительно различается, в 2018 году их количество было на уровне критических порогов вредоносности, чему способствовали благоприятные погодные условия и качественная работа гербицида (Секатор 0,075 л/га). В 2019 и 2020 годах на ячмене использовали гербицид (Базагран 3 л/га), так как Секатор использовался уже три года подряд и для снижения риска возникновения резистентности гербицид заменили. Эффективность гербицида (Базагран 3л/га) была не высокой, устойчивыми к нему оказались сорняки (ромашка непахучая (Matricaria inodora), торица полевая, (Spergula vulgaris) мелколепестник канадский (Erigiron Canadensis) и их количество колебалась по годам от 4 до 14 и от 4 до 23 шт/м² в 2019 и 2020 годах соответственно. Наибольшее количество в посевах ячменя отмечается мятлика однолетнего (Роа annua), сорняк из одного семейства с культурой, гербицид против него не работает, поэтому его количество достигало 102 в 2019 году и 82 шт/м² в 2020. Таким образом, данный сорняк последние два года в структуре сорного компонента ячменя занимал 75 - 80 %.

Отказ от применения гербицидов на вико-овсяной смеси на зеленый корм, идущей в севообороте после ячменя из-за чувствительности бобового компонента приводило к резкому увеличению засоренности посевов, особенно на варианте прямого посева (рис. 7,8). Отсутствие механического уничтожения сорняков на вариантах прямого посева приводит к увеличению количества многолетних сорных растений в среднем по годам до

15 шт/м², что вызывает необходимость применения гербицида сплошного действия после уборки культуры на варианте прямого посева при подготовке поля к посеву озимой пшеницы. Надо также отметить, что мятлик однолетний в структуре сорного компонента вико-овсяной смеси занимает по годам от 30 до 65 %, что в последующем вызывает сильное засорение этим сорняком озимой пшеницы.

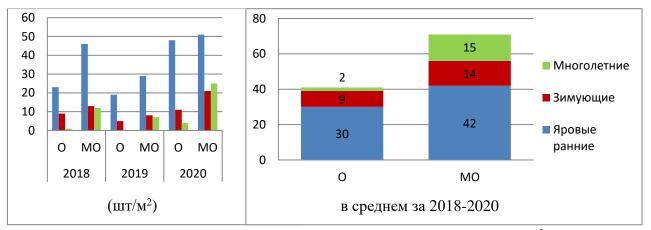


Рис. 7, 8 - Биогруппы сорных растений в посевах вико-овса (шт/м^2) в среднем за 2018-2020 (шт/m^2)

Анализ представленных данных по вариантам обработки за исследуемые годы показывает рост количества сорных растений по минимальным технологиям. При этом на вариантах минимальной обработки гербицидная нагрузка на поля в два раз выше, чем на вариантах с ежегодной вспашкой на 20-22 см. Учитывая современную тенденцию перехода на минимальные технологии возделывания сельскохозяйственных культур, а следовательно и увеличения пестицидной нагрузки на поля в системах точного земледелия разрабатываются приемы дифференцированного применения гербицидов для снижения отрицательного воздействия ядохимикатов на окружающую среду и экономии затрат на их применение. С этой целью возникает необходимость определения пространственного распределения сорных растений по полю с помощью датчиков и электронных карт засоренности участка [3,4].

В наших исследованиях по выполненным учетам мы определили встречаемость сорных растений на полях по методике представленной выше (табл. 2).

Анализ таблицы показал, что пространственное распространение сорняков по отдельным полям не одинаково и сильно зависит от возделываемой культуры. Наиболее

Электронный научно-производственный журнал «АгроЭкоИнфо»

часто встречаемые виды на всех участках это мятлик однолетний (45 %) и ромашка непахучая (41%). Это наиболее агрессивные сорняки, которые присутствуют в посевах всех культур в большом количестве. Меньшее распространение имеют зимующие сорняки пастушья сумка (Capsela bursa-pastoris) и фиалка полевая (Viola arvensis) 19 %, они также засоряют все культуры севооборота. Из яровых ранних сорняков распространены торица полевая и сушеница топяная (Gnaphalium uliginosum) 22 и 23 % соответственно. Технология возделывания культуры также оказывает существенной влияние на распространенность сорняка. Особенно это заметно по специализированным сорнякам, например костер полевой (Bromus arvensis) встречается только в озимой пшенице, а мелколепестник канадский отсутствует на вариантах вспашки по всем культурам. Используя эти данные можно более адресно подбирать методы борьбы с обременительными сорняками в посевах различных культур.

Таблица 2. Видовой состав и встречаемость сорной растительности в посевах культур зернопропашного севооборота

зернопропашного севоооорота												
Виды сорных растений	Эзимая пшеница	Встречаемость, %		ень	Встречаемость, %	Карто	фель	Встречаемость, %	Вика-овёс		Встречаемость, %	Встре чаемо сть в сред- нем по
	сум ма М	Встре	сум ма МО	сум ма О	Встре	сум ма МО	сум ма О	Встре	сум ма МО	сум ма О	встре	опытн ому полю %
<mark>Многолетние</mark>												
Бодяк полевой	6	19	2	3	16	-	3	9	2	7	28	18
Одуванчик лекарственный	7	22	2	-	6	-	3	9	7	-	22	15
Осот полевой	-	-	1	1	6	-	-		4	-	12	3
Подорожник большой	-	-	13	8	66	-	-		7	2	28	23
Пырей ползучий	1	3	2	-	6	8	8	50	-	-		15
Хвощ полевой	-	-				-	3	9	ı	-		2
Малолетние												
Дымянка аптечная	-	-	1	4	16		1	3	5	1	19	9
Костёр полевой	7	22		-	1	-	-	-	1	-	-	1
Мелколепестник канадский	10	31	2	ı	6	-	-	1	2	-	6	14
Мятлик однолетний	8	25	16	11	84	2	4	19	14	2	50	45

Виды сорных	rs		Ячмень		Картофель			Вика-овёс			Встре	
растений	пшеница	%			%			%			%	чаемо
	пен	•			•			•			•	сть в
		ЭСТ			стречаемость			ЭСТ			эст	сред-
	тая	SMC			SMC			SM(ЭМС	нем
	р Встречаемость	ча			чае			Встречаемость			Встречаемость	ПО
			I	. be	опытн							
	сум	36	сум	сум	Всл	сум	сум	33	сум	сум	3c1	ому
	ма		ма	ма		ма	ма		ма	ма		полю
	M		MO	О		MO	О		MO	О		%
Пастушья сумка	2	6	3	4	22	2	2	13	4	7	34	19
Подмаренник	-	-	6	4	31	6	9	47	2	2	12	23
цепкий												
Ромашка непахучая	7	22	11	4	47	8	9	53	9	5	44	41
Сушеница топяная		-	3	5	25				7	15	69	23
Торица полевая		-	2	3	15	3	2	16	8	10	56	22
Фиалка полевая	2	6	1	4	16	2	4	19	6	5	34	19
Ярутка полевая	-	-	-	-	-	1	1	6	7	3	31	9

Показатель встречаемости дает представление о распространенности сорняка по полю, но не дает информации о местоположении сорняка. Для решения этой задачи мы по учетным рамкам в программе SURFER 6.1. построили карты засоренности полей севооборота (рис. 9,10). Особое внимание, хочется обратить на многолетние сорняки, основные их представители имеют встречаемость от 15 до 23%. Чаще всего многолетние сорняки размножаются куртинами, благодаря вегетативному размножению, что позволяет проводить с ними борьбу дифференцированно, определяя куртину с помощью датчиков on-line или при создании электронной карты off-line.

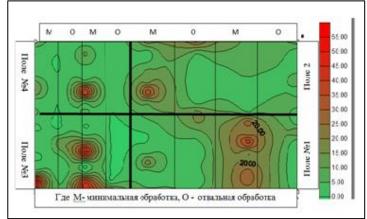


Рис. 9 – Карта распределения многолетних сорных растений по полям севооборота (шт/м²⁾

В нашу задачу входило показать неравномерность распределения сорняков по полям севооборота в зависимости от интенсивности обработки почвы.

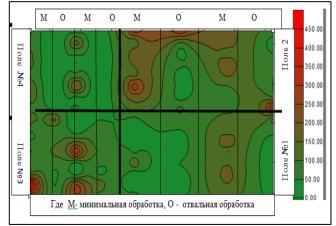


Рис. 10 – Карта общей засоренности опытного участка шт/м²

Анализ карты показывает, что основная масса многолетних сорных растений находится на вариантах минимальной обработки. При использовании данной карты мы можем заложить в программу бортового компьютера увеличение нормы расхода гербицидов по координатам максимального количества многолетних сорных растений и наоборот снизить расход в местах, где они отсутствуют.

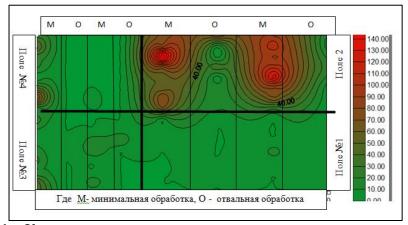


Рис. 11 – Карта распределения мятлика однолетнего по полям севооборота шт/м²

На карте, построенной по данным общего количества сорных растений, мы видим, что основные куртины сорняков совпадают с местоположением многолетних сорных растений. Это можно объяснить тем, что многолетние сорные растения подавляют культуру и снижают ее конкурентную способность, чем и пользуются другие биогруппы

Электронный научно-производственный журнал «АгроЭкоИнфо»

сорных растений, заполняя нижний ярус, увеличивая общее количество сорняков в данной точке координат.

Как было сказано выше наибольшее количество сорных растений встречается на вариантах минимальной обработки почвы. Это хорошо просматривается на картах и особенно на карте распределения мятлика однолетнего (рис. 11). На поле № 2 где возделывался ячмень на минимальной обработке по двум повторностям его количество максимально. Таким образом, построение карт дает нам возможность четко отслеживать не только количество сорняков, но и пространственное их расположение на поле. Однако рамочный метод учета для построения карт требует большого количества площадок, очень трудоемок и в производственных условиях практически не используется. По этой причине сегодня ведется поиск методов идентификации сорных растений с помощью различных датчиков с использованием беспилотных летательных аппаратов (БПЛА), которые позволяют быстро и оперативно получать необходимые данные. Однако получение этих данных осложняется тем, что обработка гербицидами ведется по всходам сорняков в фазе 3-5 листьев и для их идентификации нужно высокое разрешение используемых приборов, а это увеличивает их стоимость. Поэтому затраты на их применение на сегодняшний день не всегда окупаются экономией средств по защите растений, что также сдерживает их широкое применение с этой целью в условиях производства.

Таким образом, проведенные исследования показали, что использование минимальных технологий обработки почвы в зернопропашном севообороте увеличивает засоренность культур в 2 - 3 раза по сравнению с вариантом ежегодной вспашки на 20-22 см. По этой причине гербицидная нагрузка на вариантах прямого посева культур увеличивается в 2 раза.

В условиях проведения эксперимента в структуре сорного компонента стали преобладать ряд сорняков, наиболее приспособленных к данным технологиям возделывания культур (мятлик однолетний, ромашка непахучая, фиалка полевая) их доля колеблется по годам исследований от 50 до 70 %.

Построение карт засоренности опытного участка показало неравномерность пространственного распределения сорного компонента по полям севооборота, что

позволяет в системе точного земледелия использовать дифференцированное применение гербицидов в режиме «off-line».

Список использованных источников

- 1. Архипова О.Е. Оценка засоренности антропогенных фитоценозов на основе данных дистанционного зондирования Земли (на примере амброзии полыннолистной) / О.Е. Архипова, Н.А. Качалина, Ю.В. Тютюнов, О.В. Ковалев // Исследование Земли из космоса. − 2014. − №6. − С. 15-26.
- 2. Смелкова И.А. Использование оптических датчиков в борьбе с сорными растениями в системе точного земледелия / В.Д. Полин, И.А. Смелкова, Д.Г. Туляков // Нивы Зауралья. 2013. N = 0. С. 76-79
- 3. Шпанев А.М. Перспективы определения засоренности посевов с помощью беспилотного летательного аппарата / А.М. Шпанев // Применение средств дистанционного зондирования земли в сельском хозяйстве. СПб., 2015. С. 85-88.
- 4. Гурьянов А.М Оценка засоренности агроценозов и эффективность дифференцированного применения гербицидов в севообороте / А.М. Гурьянов, А.А Артемьев // Аграрная наука Евро-Северо-Востока. 2018. № 5 (66). С. 83-89.

Цитирование:

Гогмачадзе Г.Д., Матюк Н.С., Полин В.Д., Биналиев И.Ф. Структура сорного компонента и его пространственное распределение в полях зернопропашного севооборота [Электрон. ресурс] // АгроЭкоИнфо: Электронный научно-производственный журнал. – 2021. – №1. – Режим доступа: http://agroecoinfo.narod.ru/journal/STATYI/2021/1/st_112.pdf. Индекс DOI: https://doi.org/10.51419/20211112.