Продуктивность картофеля при использовании различных видов ОМУ Электронный научно-производственный журнал «АгроЭкоИнфо»

УДК 633.689 631.454

Продуктивность картофеля при использовании различных видов ОМУ

Виноградова В.С., Козина А.А.

Костромская государственная сельскохозяйственная академия

Аннотация

Использование органоминеральных удобрений в виде гранул и пеллет с добавлением гуминового фитобиокомплекса, при выращивании картофеля, благоприятно влияет на фракционный состав клубней. Наибольший показатель массы и количества клубней был получен на варианте с внесением удобрения ОМУ в виде пеллет + ГФБК, - 910,21г/растение, при общем количестве 11,09 шт. Обработка ГФБК по вегетации на варианте с удобрением ОМУ в виде пеллет + ГФБК позволила получить прибавку урожая клубней 4,82т/га, относительно урожая контроля 31,59т/га. Этот прием способствовал увеличению содержания сухого вещества, которое составило 19,09% и на варианте при внесении удобрений в почву 19,80%.

Ключевые *слова*: ОРГАНОМИНЕРАЛЬНЫЕ УДОБРЕНИЯ, ГУМИНОВЫЙ ФИТОБИОКОМПЛЕКС, ФРАКЦИОННЫЙ СОСТАВ КЛУБНЕЙ КАРТОФЕЛЯ, УРОЖАЙНОСТЬ, СУХОЕ ВЕЩЕСТВО

Введение

Одной из основных задач земледелия является получение экологически чистой продукции, а также сохранение и восстановление плодородия почвы [1]. Картофель характеризуется высокой требовательностью к содержанию питательных веществ в почве. Такая биологическая особенность картофеля обусловлена слаборазвитой корневой системой. Для хорошего роста и развития картофеля необходимы: азот, калий, фосфор, кальций и микроэлементы. Поглощение питательных веществ растением начинается после образования корневой системы. На количество ценных питательных веществ оказывают влияния кислотность, формы удобрений, погодные условия, и другие факторы. Известно, что максимальное поглощение питательных веществ растениями происходит в

Продуктивность картофеля при использовании различных видов ОМУ

Электронный научно-производственный журнал «АгроЭкоИнфо»

фазы бутонизации и цветения. Все элементы питания оказывают определенное влияние на рост, развитие и накопление урожая. Большую часть питательных веществ картофель потребляет в первую половину вегетационного периода, а к концу вегетации усвоение питательных веществ уменьшается. При образовании клубней картофеля используются питательные вещества из почвы, внесенных удобрений, а также ранее накопленные в ботве. Оптимизация питания картофеля макро- и микроэлементами способствует увеличению урожайности клубней и повышению качественных показателей картофеля [2, 3]. Поэтому сегодня одной из наиболее важных задач является поиск новых видов удобрений, характеризующихся экологически безопасных значительно эффективностью. Особое значение приобретают удобрения пролонгированного действия с заданными свойствами и структурой. Их использование предупреждает загрязнение почв и водоемов, позволяет управлять ростом и развитием растений, избегать накопления в растительной продукции избыточного количества вредных элементов, а целевые добавки, которые вводятся в удобрения, позволяют уменьшить токсикоз почвы и предотвратить почвоутомление [4].

Органоминеральные удобрения (ОМУ) наиболее эффективны и сочетают в себе смесь органических и минеральных компонентов, а также обладают свойствами пролонгированного действия и возможности эффективного использования элементов питания, в существенно меньших дозах. Гранулированная структура или структура пеллет этих удобрений позволяет равномерно вносить их в рядки и в рациональных дозах, с учетом требований биологии культуры [5]. Разработка и производство новых комплексов, на основе гуматов, позволит не только повысить урожайность и качество хозяйственнопродукции сельскохозяйственных культур, но и сохранить экологическую безопасность агроэкосистем.

Цель исследований - оценить влияние различных видов органоминеральных (ОМУ) и гуминовых фитобиокомплексов (ГФБК) на продуктивность картофеля и содержание сухого вещества в клубнях.

Материалы и методы исследований

Полевые опыты проводили на опытном поле Костромской ГСХА в 2019-2020гг. Почва опытного участка слабокислая дерново-подзолистая с содержанием гумуса 1,5 -1,6

Продуктивность картофеля при использовании различных видов ОМУ

Электронный научно-производственный журнал «АгроЭкоИнфо»

%, подвижного фосфора – 212-233 мг/кг, обменного калия 47-56мг/кг. Объект исследований - картофель сорт Пикассо. Предмет исследований - Органоминеральное удобрение (ОМУ) - содержат в своем составе %: $N_7, P_7, K_8, Mg_{1,5}, S_{3,92}$, микроэлементы и гуминовые соединения 11%, в виде гранул и пеллет и ГФБК (гуминовый фитобиокомплекс). ГФБК - это удобрительно-регуляторный комплекс на основе фитогуматов, полученных методом кавитации торфа с растительным сырьем, с включением микроудобрения Аквамикс (0,5кг/т) и микробного консорциума в составе бактериальных препаратов Азотовит, Фосфатовит и Бисолбифит по 400г/т. Исследования осуществляли посредством постановки полевых опытов, заложенных по следующей схеме: 1.Контроль – Аммофоска (300кг/га); 2.ОМУ пеллеты (0,5т/га); 3.ОМУ гранулы (0,5 $T/\Gamma a$); 4.ОМУ0,5 $T/\Gamma a$ (пеллеты)+ $\Gamma \Phi E K(1 \pi/T)$; 5.ОМУ0,5 $T/\Gamma a$ (гранулы)+ $\Gamma \Phi E K(1 \pi/T)$: - без обработки и с обработкой ГФБК - органоминеральных удобрений (1л/т/10л, перед внесением в почву) и вегетирующих растений (1л/га/300л, с использованием ранцевого опрыскивателя) фазу интенсивного Повторность роста. трехкратная, рендомизированным расположением делянок. Площадь опыта - 160 м². Площадь учетной делянки - $5 \,\mathrm{m}^2$. Норма высадки клубней — $40 \mathrm{тыс.шт/гa}$. Закладку полевых опытов и исследований проводили в соответствии с утвержденными методиками [5,6]. Агрохимические анализы проводили в лаборатории массовых анализов ГСАС «Костромская». Агрометеорологические условия периода проведения исследований были уровне среднемноголетних. Статистическую обработку проводили дисперсионного анализа с использованием пакета прикладных программ Microsoft Excel.

Результаты исследований

Картофель достаточно требователен к питательным веществам. Для получения хороших урожаев они должны быть доступны растениям вовремя в нужном количестве и в необходимой форме. Именно высокая продуктивность картофеля обуславливает его повышенную потребность в питательных элементах [7].

Учет фракционного состава урожая клубней картофеля показал, что при внесении в почву ОМУ в виде пеллет + ГФБК, масса клубней на одном растении составила 822,34г, что существенно выше, в сравнении с контролем, на 202,41г и другими вариантами на

Продуктивность картофеля при использовании различных видов ОМУ Электронный научно-производственный журнал

«А́гроЭ́коИнфо»

94,97 — 150,66г. Существенно выше было и количество клубней 10,92шт/растение, относительно контроля 9,00шт.(табл. 1).

Таблица 1. Фракционный состав урожая клубней картофеля при внесении ОМУ + ГФБК в почву

Вари	Масса клубней, г/растение				Количество клубней, шт./растение			
анты	< 50Γ	50-80г	>80₽	Всего	<50Γ	50-80г	>80г	Всего
Внесение удобрений в почву								
1	114,90	155,75	349,28	619,93	3,75	2,42	2,83	9,00
2	86,25	143,57	497,55	727,37	2,58	2,25	4,25	9,66
3	109,49	122,24	450,42	682,15	3,25	1,75	3,50	8,50
4	88,86	184,46	549,02	822,34	3,17	2,83	4,92	10,92
5	150,26	154,10	367,32	671,68	4,50	2,50	3,25	10,25
HCP ₀₅	53,44	84,25	128,51	164,58	1,64	1,29	2,31	1,51

Примечания: 1.Контроль — Аммофоска (300кг/га); 2.ОМУ пеллеты (0,5т/га); 3.ОМУ гранулы (0,5 т/га); 4.ОМУ(пеллеты)+ Γ ФБК (1л/т); 5. ОМУ гранулы + Γ ФБК(1л/т) - без обработки растений

Прием применения удобрения ОМУ+ГФБК в виде пеллет в почву и обработки ГФБК по вегетирующим растениям, способствовало накоплению большей массы клубней картофеля 910,21г/растение и количеству клубней 11,09шт/растение, что выше контроля на 120,37г и 0,84 шт, соответственно. В сравнении с другими вариантами выше на 159,27 – 174,95 г/растение и 2,26-3,92 шт/растение. В остальных вариантах достоверной разницы по показателям массы и количества клубней на растении не было получено. (табл. 2).

Таблица 2. Фракционный состав урожая клубней картофеля при внесении удобрений в почву и обработкой ГФБК по вегетирующим растениям

Вари	Масса клубней, г/растение				Количество клубней, шт./растение				
анты	<50Γ	50-80г	>80г	Всего	<50Γ	50-80г	>80г	Всего	
Внесение удобрений в почву и обработка растений ФГБК									
1	129,79	183,05	477,00	789,84	3,75	2,92	3,58	10,25	
2	63,56	123,13	498,69	685,38	2,33	1,92	4,33	8,58	
3	57,78	103,37	474,11	635,26	2,08	1,67	3,42	7,17	
4	144,53	143,15	622,53	910,21	4,42	2,17	4,50	11,09	
5	84,48	184,09	482,37	750,94	2,42	2,83	3,58	8,83	
HCP ₀₅	56,93	128,99	166,14	125,76	1,33	1,96	1,84	3,64	

Примечания: 1.Контроль — Аммофоска (300кг/га); 2.ОМУ пеллеты (0,5т/га); 3.ОМУ гранулы (0,5 т/га); 4.ОМУ(пеллеты)+ Γ ФБК (1л/т); 5.ОМУ гранулы + Γ ФБК(1л/т) - с обработкой растений Γ ФБК в фазу интенсивного роста

Продуктивность картофеля при использовании различных видов ОМУ Электронный научно-производственный журнал

«А́гроЭ́коИнфо»

Внесение органоминеральных удобрений в виде пеллет в почву позволило дополнительно собрать 4,29т/га клубней картофеля, против контрольного 24,8т. Более высокая прибавка была получена на варианте, с применением удобрения ОМУ+ГФБК в виде пеллет, которая составила 32,89т/га, что выше контроля на 8,09 т/га и существенно выше других вариантов на 3,8-6,03 т/га. При внесении удобрений в почву и обработки ГФБК по вегетации растений удалось получить достоверно высокую прибавку урожая, только на варианте ОМУ+ГФБК в виде пеллет, который составил 36,41 т/га, что выше контроля на 4,82 т/га и остальных вариантов на 6,37-11,00т/га. Следует отметить, что обработка растений гуминовым фитобиокомплексов в других вариантах значительно снизила урожайность клубней картофеля, относительно и контрольных показателей на 4,17-6,18т/га (табл. 3).

Таблица 3. Урожайность клубней картофеля, т/га

Варианты	Внесение	Внесение удобрений в почву и		
	удобрений в почву	обработка ФГБК по вегетации		
		растений		
Контроль – Аммофоска (300	24,80	31,59		
кг/га)				
ОМУ пеллеты (0,5 т/га)	29,09	27,42		
ОМУ гранулы (0,5 т/га)	27,29	25,41		
ОМУ пеллеты + ГФБК	32,89	36,41		
(1л/т)				
ОМУ гранулы + ГФБК(1л/т)	26,86	30,04		
HCP ₀₅	3,02	3,25		

Благодаря внесению органоминеральных удобрений + ГФБК (в виде пеллет) улучшились качественные показатели клубней картофеля. Содержание сухого вещества повысилось на 0,92%, относительно контроля и сбор сухого вещества составил 6,51т/га, против контроля - 4,68т. И хотя, урожайность клубней была ниже контрольной, при использовании приема обработки растений (кроме 4 варианта), показатели содержания сухого вещества были выше на 0,51-0,19% (табл. 4).

Заключение

Исследования показали, что использование органо-минеральных удобрений в виде гранул и пеллет с добавлением гуминового фитобиокомплекса, при выращивании

Продуктивность картофеля при использовании различных видов ОМУ

Электронный научно-производственный журнал «АгроЭкоИнфо»

картофеля, благоприятно влияет на фракционный состав клубней. Урожай составляли клубни средней и крупной фракции. Наибольший показатель массы и количества клубней был получен на варианте с внесением удобрения ОМУ в виде пеллет + ГФБК, - 910,21г/растение, при общем количестве 11,09 шт. Обработка ГФБК по вегетации на варианте с удобрением ОМУ в виде пеллет + ГФБК позволила получить прибавку урожая клубней 4,82т/га, относительно урожая контроля 31,59т/га. Этот прием способствовал увеличению содержания сухого вещества, которое составило 19,09% и на варианте при внесении удобрений в почву 19,80%.

Таблица 4. Содержание, % и сбор сухого вещества, т/га

Ba	Содержание сух	хого вещества, %	Сбор сухого вещества, т/га			
ри	Внесение	Внесение удобрений в	Внесение	Внесение удобрений в почву		
ан	удобрений в	почву и обработка	удобрений	и обработка ФГБК по		
T	почву	ФГБК по вегетации	в почву	вегетации растений		
		растений				
1	18,88	18,90	4,68	5,97		
2	17,66	18,37	5,14	5,04		
3	18,45	17,26	5,04	4,39		
4	19,80	19,09	6,51	6,95		
5	19,28	19,41	5,18	5,83		

Список использованных источников

- 1. Савельев, В. А. Картофель: монография / В. А. Савельев. 2-е изд., стер. Санкт-Петербург: Лань, 2017. 240 с.
- 2. Проценко Е.А., Виноградова В.С., Козина А.А. Агроэкологические аспекты приемов применения гуминовых фитобиокомплексов при выращивании картофеля // АгроЭкоИнфо. 2020, №1. http://agroecoinfo.narod.ru/journal/STATYI/2020/1/st_120.pdf.
- 3. Хачукаев, Р.С. Применение энергосберегающих и интенсивных элементов технологии возделывания продовольственного картофеля / Р. С. Хачукаев, Е. А. Иванюшин // Вестник Курганской ГСХА. 2019. № 1. С. 31-34. ISSN 2227-4227.
- 4. Иванова М.В. Влияние систем удобрений на продуктивность сельскохозяйственных культур в условиях Костромской области // АгроЭкоИнфо. 2020 №2. -http://agroecoinfo.narod.ru/journal/STATYI/2020/2/st_201.pdf
- 5. Доспехов Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований). 6-е издание, стереотип. М.: ИД Альянс, 2011. 352с.,

Продуктивность картофеля при использовании различных видов ОМУ

Электронный научно-производственный журнал «АгроЭкоИнфо»

6.Посыпанов Г.С. Растениеводство / Г.С. Посыпанов, В.Е. Долгодворов, Б.Х. Жеруков и др.; Под ред. Г.С. Посыпанова. – М.: ИНФА-М.-2018. – 612с. – (Высшее образование: Бакалавриат).

7. Ториков В. Е. Растениеводство / В. Е. Ториков, Н. М. Белоус, О. В. Мельникова, С. В. Артюхова; под общей редакцией В. Е. Торикова. — Санкт-Петербург: Лань, 2020. — 604 с. — ISBN 978-5-8114-4744-2.

Цитирование:

Виноградова В.С., Козина А.А.

Продуктивность картофеля при использовании различных видов ОМУ [Электрон. ресурс] // АгроЭкоИнфо: Электронный научно-производственный журнал. – 2021. – №1. – Режим доступа: http://agroecoinfo.narod.ru/journal/STATYI/2021/1/st_122.pdf. DOI: https://doi.org/10.51419/20211122.